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Abstract

A numerical study of the conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is
performed. The formulation in primitive form is solved using a pressure-correction algorithm. A parametric study is conducted by vary-
ing the heat generation based Grashof number, aspect ratio and the solid-to-fluid thermal conductivity ratio over wide ranges with the
Prandtl number fixed at 0.7. Results are presented for the temperature distributions and Nusselt numbers. The average Nusselt numbers
on the inner and outer boundaries show an increasing trend with the Grashof number. Correlations are presented for the Nusselt number
and the dimensionless temperatures of interest in terms of the parameters of the problem.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection heat transfer in a differentially heated
vertical annulus was investigated both experimentally and
numerically by several investigators. In these studies, the
heat transfer in the annulus is delineated into three flow
regimes, viz., conduction, transition and boundary-layer
regimes. Beginning from the studies reported in [1,2], natu-
ral convection in vertical annuli with isothermal warm inner
and cold outer vertical surfaces received much attention [3–
7], where a thorough coverage of the literature can be found.
The case of a vertical annulus with isoflux inner vertical sur-
face and isothermal outer vertical surface was considered in
[5,8]. The coupling of conduction and natural convection in
a vertical annulus was studied in [9,10]. The present work is
a numerical study of the conjugate natural convection heat
transfer in a vertical annulus. The convection is driven by
the volumetric heat generation in a centrally placed solid cir-
cular rod. The problem finds applications in spent nuclear
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casks and electrical and electronic equipment, where, apart
from the natural convection taking place in the annulus, the
temperature distribution in the central vertical rod is of
interest. This necessitates the solution of a conjugate prob-
lem. For instance, spent nuclear fuel casks contain one or
more canisters of circular, square or hexagonal cross-sec-
tion, containing bundles of fuel rods arranged in triangular
or square arrays. The canister can often be modelled as a
heat generating solid with an equivalent thermal conductiv-
ity, as the natural convection in the fill gas is often negligible.
Methods of calculating equivalent thermal conductivity of
such arrays of tubes or rods have been presented in [11].
The quantities of interest in the present study are the maxi-
mum and average temperatures of the rod, local heat flux
and Nusselt number distributions on the inner and outer
surfaces of the annulus, the flow and temperature distribu-
tions and the average Nusselt numbers.
2. Governing equations and solution method

Fig. 1 shows the physical model and the coordinate sys-
tem. The cylindrical polar coordinate system is chosen to
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Nomenclature

a thermal diffusivity, m2 s�1

cp specific heat at constant pressure, J kg�1 K�1

g acceleration due to gravity, m s�2

Gr Grashof number, gbDT cL3
c=m

2
c, dimensionless

Lc characteristic dimension (annulus gap width),
Ro � Ri, m

H height of the annulus, m
Nu Nusselt number, aLc=kc, dimensionless
p excess pressure over the hydrostatic, Pa
Pr Prandtl number, gcp=kc, dimensionless
_Qv;c characteristic volumetric heat generation rate, W m�3

Ri inner radius of the annulus, m
Ro outer radius of the annulus, m
t time, s
T temperature, K
vr, vz velocities in the r and z directions, m s�1

r, z cylindrical coordinates, m

Greek symbols

a heat transfer coefficient, W m�2 K�1

b volumetric expansion coefficient, K�1

DT c characteristic temperature difference, _Qv;cL2
c=kc,

K
g dynamic viscosity, Pa s
j radius ratio, Ro=Ri, dimensionless
k thermal conductivity, W m�1 K�1

m kinematic viscosity, m2 s�1

q density, kg m�3

w stream function, wref þ
R

rðvzdr � vrdzÞ, m3 s�1

Subscripts
av average
i inner boundary
l local
o outer boundary
ref reference
s solid
cl centreline
max maximum

Superscript
* dimensionless quantity
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describe the geometry, with the origin placed at the centre
of the bottom plate. Assuming axi-symmetry, a semi-verti-
cal r–z plane marked OABCDEO is considered for the
analysis. The top and bottom end plates are adiabatic.
The flow equations are written subject to the Boussinésq
approximation [12]. The temperature differences are
assumed to be sufficiently small in order to neglect the radi-
ation heat transfer. The continuity, radial momentum,
axial momentum and energy equations in dimensionless
form are, respectively, as follows:

1

r�
o

or�
ðq�r�v�r Þ þ

o

oz�
ðq�v�zÞ ¼ 0 ð1Þ

o

ot�
ðq�v�r Þ þ

1

r�
o

or�
ðq�r�v�r v�r Þ þ

o

oz�
ðqv�zv�r Þ

¼ 1

r�
o

or�
r�g�

ov�r
or�

� �
þ o

oz�
g�

ov�r
oz�

� �
þ S�vr ð2Þ

o

ot�
ðq�v�zÞ þ

1

r�
o

or�
ðq�r�v�r v�zÞ þ

o

oz�
ðqv�zv�zÞ

¼ 1

r�
o

or�
r�g�

ov�z
or�

� �
þ o

oz�
g�

ov�z
oz�

� �
þ S�vz ð3Þ

o

ot�
ðq�T �Þ þ 1

r�
o

or�
ðq�r�v�r T �Þ þ o

oz�
ðq�v�zT �Þ

¼ 1

r�
o

or�
r�

k�

Prc�p

oT �

or�

 !
þ o

oz�
k�

Prc�p

oT �

oz�

 !
þ S�T ð4Þ
where the source terms appearing in the above equations
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The dimensionless quantities appearing in the above equa-
tions are defined as
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In the above system of non-dimensionalization, the sub-
script c denotes the characteristic or reference quantity.
The characteristic dimension Lc is the gap width Ro � Ri.
The reference temperature T c is the same as the annulus
outer boundary temperature T o. The quantity _Q�vðr�; z�Þ



Fig. 1. Physical model and coordinate system.
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in Eq. (7) is set to unity in the solid and to zero in the fluid.
Eq. (4) applies to fluid region with the source term set to
zero. The same equation applies to the concentrically
placed vertical solid cylinder with the velocities set to zero.
The characteristic properties correspond to those of the
fluid and hence the dimensionless property ratios men-
tioned in Eq. (7) take a value of unity in the fluid region
and appropriate values, denoted here as q�s , c�s and k�s , in
the solid. Steady state results are obtained as long-time
solutions of the time-dependent equations. The solid region
is considered as a fluid region of infinite viscosity by setting
the quantity g�s to a very large number. The quantity b� is
set to unity in the fluid region and to zero in the solid re-
gion. In the steady state, since the time derivatives of the
dependent variables vanish, the actual value of the solid
thermal capacitance q�s c�s is immaterial. In view of this, q�s
and c�s are set to unity in the present numerical formula-
tion. Thus the time marching solution for the solid energy
equation may be considered as a false transient.

The initial conditions are zero dimensionless velocities in
the fluid region and zero dimensionless temperature
throughout the computational domain. The hydrodynamic
boundary conditions are no-slip and zero permeability on
all solid boundaries. The thermal boundary conditions
are zero dimensionless temperature on the outer surface
of the annulus, adiabatic conditions on the top and bottom
surfaces and zero temperature gradient condition on the
centreline of the rod. At the interface between the rod
and the fluid, heat flux continuity and no temperature jump
conditions are assumed.

The parameters of the problem are the dimensionless
inner radius R�i of the annulus, the aspect ratio H �, the heat
generation based Grashof number Gr, the Prandtl number
Pr of the fluid and the solid-to-fluid thermal conductivity
ratio k�s . The radius ratio jð¼ R�o=R�i ¼ 1þ 1=R�i Þ can be
employed as an alternative parameter to the dimensionless
inner radius R�i . The local and the average heat transfer
coefficients are based on the difference between the average
interface temperature and the outer boundary temperature.
The local Nusselt number on the inner surface is given by

Nul;i ¼ �
1

T �av;i

oT �

or�

� �
l;i

ð9Þ

The average Nusselt number on the inner surface can be
obtained by integration of the local Nusselt number. The
Nusselt numbers for the outer boundary are similarly de-
fined. The total heat transfer rate through both the inner
and outer boundaries should equal the heat generation
rate. Therefore the relation connecting the inner and outer
surface average Nusselt numbers is

Nuav;iT �av;i2pR�i H � ¼ Nuav;oT �av;i2pR�oH � ¼ pR�2i H � ð10Þ

The governing equations are discretised on a staggered
mesh [13]. The SIMPLEC algorithm [14] is employed for
the pressure–velocity coupling. In generating the mesh in
each direction, the coordinates corresponding to the con-
trol volume faces are first calculated and the pressure nodes
are placed at the geometric centres of the control volumes.
The Roberts transformation [15] is used for mesh genera-
tion in each direction. The time derivatives are approxi-
mated by backward differences and the diffusive terms, by
central differences. The convective terms are discretised
with a third-order accurate, hybrid linear and parabolic
approximation [16]. For velocity corrections, the velocity
nodes belonging to the fluid and solid regions are
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identified. For the fluid region nodes, the velocity correc-
tions are implemented in the usual manner, while for the
solid region, the velocity corrections are set to zero in order
that the velocities remain at the initially prescribed zero
values. The discretised equations are solved with the mod-
ified strongly implicit procedure (MSIP) [17]. The time step
employed is typically 25 times of that allowable by an ex-
plicit method [18] and depends on the parameter set. A
sequential solution scheme is adopted by first solving the
momentum and the pressure correction equations, and cor-
recting the velocities and the pressure. Next, the energy
equation is solved. Global iterations are continued over
the same time step until the required coupling between
the equations is achieved. The time marching is continued
until satisfactory time convergence is achieved.
Table 1
Comparison of the present Nusselt numbers with those of Farouk, Ball
and Dixit (FBD) [3] for the differentially heated annulus for Gr ¼ 105 and
j ¼ 2

H� Pr ¼ 0:07 Pr ¼ 0:7 Pr ¼ 7:0

FBD PR PD FBD PR PD FBD PR PD

0.5 1.10 1.09 0.91 3.10 2.88 7.10 7.70 7.65 0.65
1.0 1.75 1.71 2.29 3.50 3.74 6.86 8.10 7.70 4.94
5.0 1.50 1.51 0.67 3.15 3.14 0.32 5.70 5.85 2.63

PR = present results, PD = percentage difference.
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Fig. 2. Streamlines and isotherms
Following a grid sensitivity study, the radial mesh spac-
ings are chosen between 10 + 25 (i.e., 10 in the solid and 25
in the fluid) and 25 + 25 depending upon the radius ratio
and the axial spacings are chosen between 50 and 125,
depending upon the aspect ratio. The criterion used for
time convergence is the attainment of energy balance to
within 5% as well as a relative change of less than 10�6 in
the maximum temperature over one hundred time steps
(for instance, at Gr ¼ 108, the time step ranged from
6:5� 10�5 to 6:5� 10�4). At each time step, a relative
change of 10�5 in the maximum temperature between suc-
cessive iterations is used to terminate the global iterative
process with the maximum global iterations fixed between
three and five. The computer program is validated by com-
paring the equivalent conductivity values obtained from
the present code with those reported in Farouk et al. [3],
for a differentially heated annulus. The comparison is
shown in Table 1 for various aspect ratios and Prandtl
numbers for a Grashof number (based on T o � T i) of 105

and radius ratio 2. As can be seen from this Table, there
is a good agreement between the two sets of results.

3. Results and discussion

Results are obtained for a wide parametric space, the
ranges of the parameters being 106–1010 for Grashof num-
ber (Gr), 1–15 for aspect ratio (H �), 2–8 for radius ratio (j)
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for H � ¼ 1, j ¼ 2 and k�s ¼ 5.
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and 5–100 for solid-to-fluid thermal conductivity ratio (k�s ).
As can be seen from the results, the heat generation based
Grashof number Gr is generally two to three orders of
magnitude higher than the temperature difference based
Grashof number. In view of this, steady laminar flow solu-
tions could be obtained for Gr values as high as 1010. The
working medium is air for which the Prandtl number is
taken as 0.7.
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3.1. Streamline and isotherm maps

Selected streamline and isotherm maps are shown in
Figs. 2–5. Fig. 2 corresponds to thermal conductivity ratio
5, aspect ratio 1 and radius ratio 2 and Grashof numbers
107, 108, 109 and 1010. The isotherm maps in Fig. 2 show
that the dimensionless temperatures decrease as the Gras-
hof number increases. This means that, as the Grashof
number increases, the temperature difference T � T o

increases at a slower rate than the heat generation based
characteristic temperature difference DT c. The isotherm
maps show that the core region of the annulus tends to
become stratified. The stratification effect increases as the
Grashof number increases. The slightly slanting isotherms
in the heat generating solid cylinder show that the temper-
ature distribution in the solid is mostly radial. Large radial
temperature gradients can also be seen in the fluid near the
solid–fluid interface. The fluid circulation inside the
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Fig. 3. Streamlines and isotherms for Gr ¼ 107, j ¼ 2 and k�s ¼ 5.

Fig. 4. Streamlines and isotherms for Gr ¼ 10 , H ¼ 1 and ks ¼ 5.
annulus at lower Grashof numbers is characterised by an
elongated uni-cellular motion, with a stagnation point
occurring near the central part of the outer boundary.
The stream function values show that the circulation inside
the annulus intensifies as the Grashof number increases
and that the stagnation point tends to move horizontally
towards the inner boundary. In addition, eddies tend to
develop at the top end of the inner boundary. The effect
of the aspect ratio on the flow and temperature distribu-
tions can be seen by comparing Fig. 2a with Fig. 3a and
b. The isotherms in the solid slant more with increasing
aspect ratio indicating that significant axial temperature
gradients can occur in the solid apart from the radial tem-
perature gradients. Higher aspect ratios increase the tem-
peratures in the system due to higher heat generation
rates and increase the strength of the circulation inside
the annulus. Higher aspect ratios increase the temperature
stratification in the upper part of the annulus, while lessen-
ing the same in the lower part and also promote the ten-
dency for the formation of recirculation zones in the
upper part of the annulus. When the radius ratio is
increased, the temperatures as well as the stream function
values decrease owing to the decreased total heat genera-
tion, as is revealed by a comparison of Fig. 2a with
Fig. 4a and b. Moreover, the two-dimensionality of the
solid temperature distribution becomes more prominent.
Figs. 2a, 5a and b show that increasing solid-to-fluid
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Fig. 5. Streamlines and isotherms for Gr ¼ 107, H � ¼ 1 and j ¼ 2.
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Fig. 6. Axial variation of the centreline and the interface temperatures for
k�s ¼ 5 and j ¼ 2.
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thermal conductivity ratio has the effect of homogenising
the temperature in the solid and consequently resulting in
a reduction in the radial and axial temperature gradients
in the solid. However, there occur only minor changes in
the circulation and temperature distribution inside the
annulus.

3.2. Axial temperature variation on the rod axis and the

interface

Fig. 6 presents the dimensionless temperature variation
in the axial direction along the axis of the rod and along
the interface for k�s ¼ 5, j ¼ 2, H � ¼ 1 and 5, and Grashof
numbers 106, 107 and 108. It can be seen that at a given
thermal conductivity ratio, the temperatures on the rod
axis and the interface increase in the axial direction with
the effect much more pronounced for lower Grashof num-
bers than for higher Grashof numbers. The maximum tem-
peratures always occur in the solid at the top end of the
annulus.

3.3. Axial variation of local Nusselt numbers on the inner and

outer boundaries of the annulus

Fig. 7 shows the variation of local Nusselt numbers in
the axial direction along the inner and outer boundaries.
The results are presented for the cases of k�s ¼ 5, j ¼ 2,
H � ¼ 1 and 5 and Grashof numbers 106, 107 and 108. As
can be seen from Fig. 7, there is a considerable axial vari-
ation of the Nusselt number on the inner boundary at
lower aspect ratios. Fig. 7 also shows that for these param-
eter values, there is not much axial variation in the local
Nusselt number on the inner boundary. The variation of
the Nusselt number along the outer boundary shows that
the maximum value occurs at the top and decreases
towards the bottom wall.
3.4. Variation of average solid, average inner boundary and

maximum temperatures with Grashof number

Fig. 8 shows the variation of average solid temperature,
maximum solid temperature and the average temperature
of the interface with respect to the Grashof number for
aspect ratios 1 and 5. The values of the thermal conductiv-
ity ratio and the radius ratio are 5 and 2, respectively. The
maximum dimensionless temperature in the solid decreases
as the Grashof number increases. A similar trend can be
observed for the dimensionless average temperature of
the solid and the dimensionless average interface tempera-
ture. As the aspect ratio increases, qualitatively similar
trends can be seen. In view of the definition of the dimen-
sionless temperature, although the values of T � show a
decreasing trend, the dimensional temperatures actually
increase with volumetric heat generation rate. This is
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shown in Fig. 9 for j ¼ 2, k�s ¼ 5, H � ¼ 1, Ro ¼ 0:5 and
To = 40 �C.
3.5. Average Nusselt numbers on the inner and outer

boundaries

Fig. 10 shows the variation of the average Nusselt num-
bers for the inner and outer boundaries with respect to the
Grashof number for the same parameter values mentioned
in Section 3.4. The average Nusselt numbers on the inner
and outer boundaries Nuav;i and Nuav;o show an increasing
trend with Grashof number. It can be seen that the inner
boundary Nusselt number is greater than that of the outer
boundary at any Gr. Moreover, the rate of increase of the
Grashof N
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average Nusselt number is higher at higher Grashof num-
bers. The results have also revealed that the average Nus-
selt number predicted by the conjugate analysis generally
lies between the Nusselt numbers of the equivalent isother-
mal and isoflux cases, the isothermal Nusselt numbers
being the lowest. The average Nusselt numbers of the con-
jugate analysis are found to be comparable to those of the
equivalent isoflux case at aspect ratios ranging from 1 to 5
and for low to moderate conductivity ratios.

3.6. Correlations

Correlations are obtained for the dimensionless maxi-
mum temperature T �max, average centreline temperature
T �av;cl, average inner surface temperature T �av;i, average solid
temperature T �av;s and the average Nusselt number Nuav;i, in
the form aGrbH �cjðdþe=jÞ½1þ g expð�k�s Þ�

f , for each quan-
tity. The constants a–f are obtained by subjecting the com-
puted data to a multiple non-linear regression analysis. The
correlation constants are presented in Table 2.

In Table 2, es is the standard error of estimate and R2 is
the multiple correlation. In the functional form, the expo-
nent on the radius ratio is chosen as a function of radius
umber Gr
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Fig. 10. Variation of Nuav;i and Nuav;o with Grashof number for k�s ¼ 5 and j ¼ 2.

Table 2
Correlation constants

Constant Quantity

T �max T �av;cl T �av;i T �av;s Nuav;i

a 12.8875 14.2733 7.7668 11.5426 0.5248
b �0.1722 �0.1677 �0.2013 �0.1804 0.2001
c 0.1849 0.1075 0.1335 0.1168 �0.1360
d �1.7501 �1.8402 �1.4872 �1.7095 �0.1139
e �3.5265 �3.9636 �2.1839 �3.3630 �0.6193
f 1.0543 1.2120 �1.4621 1.1973 1.7136
g 57.5526 48.3747 1.0315 27.9250 1.1357
es 0.0271 0.0311 0.0034 0.0139 0.0037
R2 0.9883 0.9868 0.9984 0.9937 0.9959
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ratio itself following the suggestion of Khan and Kumar
[8]. The form of the term containing the thermal conductiv-
ity ratio is suggested by the fact that as the thermal conduc-
tivity ratio increases, the solid becomes more and more
isothermal and the temperatures tend to attain constant
values. The average Nusselt number at the outer boundary
Nuav;o is related to the average Nusselt number at the inner
boundary Nuav;i through the relation Nuav;o ¼ ðR�i =
R�oÞNuav;i ¼ jNuav;i. Thus, the Nusselt number at the outer
boundary can be computed using the Nusselt number at
the inner boundary and the radius ratio.
4. Conclusions

A numerical study of natural convection in a vertical
annulus with isothermally cooled outer boundary and dri-
ven by a centrally located heat generating solid cylinder is
performed. In the parameter range considered, the flow in
the annulus is unicellular except at higher aspect ratios, at
which additional eddies can occur in the upper part of the
fluid region in the annulus. The core region of the annulus
exhibits temperature stratification. Higher aspect ratios
promote two-dimensionality in the solid temperature distri-
bution. The average Nusselt number from the conjugate
analysis lies between the Nusselt numbers of the isothermal
and the isoflux cases, the isothermal Nusselt numbers being
the lowest. It is possible to approximate the annulus con-
vection in the conjugate case with that of the isoflux case
at aspect ratios 1–5 and for low to moderate conductivity
ratios, provided the solid temperature distribution is not
of interest. At higher aspect ratios, the coupling between
the conduction and convection becomes important. Higher
solid-to-fluid thermal conductivity ratio homogenises the
temperature in the solid and reduces the radial and axial
temperature gradients in the solid without causing any
major changes in the circulation and temperature distribu-
tion inside the annulus. The increase of centreline and
interface temperatures in the axial direction is more pro-
nounced for lower Grashof numbers. The average inner
and outer wall Nusselt numbers are found to increase with
Grashof number, while the opposite is true in respect of
average solid, average inner boundary and the maximum
temperature. Correlations are obtained for estimating the
Nusselt numbers and the temperatures of interest.
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